MODÉLISER UN SYSTÈME DE PRODUCTION - BLOC DE COMPÉTENCES

SIMULER POUR OPTIMISER: ANTICIPEZ LES PERFORMANCES GRÂCE À LA MODÉLISATION DYNAMIQUE DE PRODUCTION.

Le rôle de Manager en numérisation des systèmes industriels inclut la capacité à modéliser virtuellement un système de production pour en analyser le fonctionnement et les leviers d'optimisation. Vous préparerez les données issues des processus, traduirez les objectifs industriels en paramètres de simulation et testerez des scénarios en environnement numérique. Cette approche permet d'anticiper les impacts de décisions techniques et stratégiques sur la performance alobale.

Vous contribuerez à la performance industrielle en transformant les données en leviers de pilotage intelligents.

OBJECTIFS

Cartographier les flux de production pour structurer la base de modélisation Paramétrer un logiciel de simulation à partir des données de production réelles Tester différents scénarios pour identifier les points de blocage ou d'optimisation Restituer les résultats de simulation à l'équipe projet pour éclairer les décisions industrielles

La certification

Ce bloc de compétences est capitalisable dans le parcours diplômant :

 Manager en numérisation des systèmes industriels, certification professionnelle enregistrée au RNCP au niveau 7 (codes NSF 200p, 201, 326), par décision de France compétences du 27/02/2025 publiée le 28/02/2025

Système d'évaluation

La validation du bloc de compétences repose sur l'évaluation d'une application réelle ou simulée des compétences acquises

BLOC DE COMPÉTENCES

Durée: 12 jours sur 3 mois

Code WEB: OPIFFMNSI3

Public

Ingénieurs production, chefs de projet industrialisation, responsables méthodes, experts en data et simulation.

Prérequis

- Bac + 3 dans le domaine industriel

Modalités d'admission

- Admission sur bulletin d'inscription. Un échange sur les objectifs individuels est prévu.
- La décision d'admission est communiquée au candidat sous un mois par CESI.

Rythme de formation

La formation est organisée selon un rythme de 3 jours par mois environ à CESI.

Frais de scolarité

4 200 euros HT Tarif applicable pour toute inscription réalisée en 2025.

Une maîtrise des outils de simulation dynamique industrielle

Un lien direct entre stratégie de numérisation et performance terrain

Des cas concrets de modélisation issus d'environnements réels

Une analyse structurée des flux et des scénarios industriels

Un rythme adapté à vos contraintes personnelles et professionnelles

Une pédagogie axée sur des cas concrets en entreprise

Un référent CESI dédié à votre réussite

Des formateurs experts du domaine

Des temps de partage entre pairs

Des blocs certifiants reconnus

Des compétences capitalisables dans un parcours long

Panorama des logiciels de simulation

Introduction

Les différentes typologies de logiciels de simulation Caractéristiques générales des logiciels

Simulation numérique de systèmes complexes

Typologie des modèles : physiques, comportementaux, multiphysiques, hybrides

Étapes du processus de modélisation et formulation mathématique

Méthodes de résolution numérique et critères de choix Validation, vérification, et évaluation de la qualité des modèles Interopérabilité et co-simulation entre systèmes hétérogènes

Optimisation des modèles numérisés

Fondamentaux de l'optimisation appliquée aux systèmes industriels numérisés

Typologie des problèmes d'optimisation : mono-objectif, multiobjectif, contraintes

Choix et formulation de la fonction objectif à partir de modèles ou de données

Optimisation paramétrique et topologique sur des modèles physiques ou numériques

Construction des scenarii de production

Définition et rôle des scénarii de production dans un environnement industriel numérisé Identification des variables clés : ressources, contraintes, capacités, aléas, objectifs

Utilisation des données historiques, en temps réel et prévisionnelles pour alimenter les scénarii

Intégration des dimensions temporelle, énergétique et logistique dans les scénarios

Utilisation d'outils numériques pour la conception et la visualisation de scénarios (Gantt, digital twin, plateformes MES/APS)

Optimisation des simulations de production

Objectifs et enjeux de l'optimisation dans la simulation des systèmes de production

Choix des indicateurs de performance à optimiser (temps de cycle, taux d'utilisation, flux, WIP, TRS, etc.)

Paramétrage des modèles de simulation pour l'optimisation (entrées, contraintes, objectifs)

Couplage entre simulateurs industriels (FlexSim, AnyLogic, Simio, etc.) et moteurs d'optimisation

Utilisation des données réelles pour affiner les paramètres et augmenter la pertinence des résultats

LOTJ: Modélisation d'un système de production

Mise en pratique des compétences professionnelles du bloc sur le cas réel de son entreprise

Validation Modéliser un système de production

Evaluation du bloc de compétences

OUVERTURES DANS NOS CAMPUS

Contactez nos campus pour en savoir plus.

Rouen

